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Abstract. In order to extend the Landauer formulation of quantum transport to correlated fermions, we
consider a spinless system in which charge carriers interact, connected to two reservoirs by non-interacting
one-dimensional leads. We show that the mapping of the embedded many-body scatterer onto an effective
one-body scatterer with interaction-dependent parameters requires to include parts of the attached leads
where the interacting region induces power law correlations. Physically, this gives a dependence of the
conductance of a mesoscopic scatterer upon the nature of the used leads which is due to electron interactions
inside the scatterer. To show this, we consider two identical correlated systems connected by a non-
interacting lead of length LC. We demonstrate that the effective one-body transmission of the ensemble
deviates by an amount A/LC from the behavior obtained assuming an effective one-body description for
each element and the combination law of scatterers in series. A is maximum for the interaction strength U
around which the Luttinger liquid becomes a Mott insulator in the used model, and vanishes when U → 0
and U → ∞. Analogies with the Kondo problem are pointed out.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 72.10.-d Theory of electronic
transport; scattering mechanisms – 73.23.-b Electronic transport in mesoscopic systems

1 Introduction

In Landauer’s formulation of quantum transport [1], the
measure of the conductance g of a coherent system is
formulated as a scattering problem between incoherent
electron reservoirs. In a two-probe geometry, the system
is connected to two reservoirs via leads. For large elec-
tron densities, the Coulomb interaction is screened and
the Coulomb to kinetic energy ratio rs is small. One has
essentially a non-interacting system of Fermi energy EF,
where the occupation of the one-body levels is given by
a Fermi-Dirac distribution at a temperature T . The sys-
tem acts as a one-body scatterer and its residual conduc-
tance g(T → 0) is given (in units of 2e2/h for single chan-
nel leads and spin degeneracy) by the probability |t(EF)|2
of an electron of energy EF to be elastically transmitted
through it.

The problem of describing coherent electronic trans-
port becomes more complex in the case where the car-
rier density is low inside the scatterer, the screening ceas-
ing to be effective and the electrons becoming correlated.
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Such situations occur in quantum point contacts of trans-
verse size smaller than the Fermi wavelength, where a
0.7 (2e2/h) structure is observed [2], and can be expected
in molecules [3], atomic chains or contacts [4], quantum
dots where few electrons might form a correlated solid, a
charge density wave, a Mott insulator, etc. In these cases,
the electrons are transmitted from one Fermi reservoir to
another through a many-body scatterer. To extend Lan-
dauer’s approach to such systems, at least for low tem-
peratures and bias voltages, one needs to reduce the bare
many-body scatterer to an effective one-body scatterer
with interaction-dependent parameters. This task will be
hopeless for an isolated system where electrons interact
with a large interaction strength U , but becomes possible
when leads where electrons do not interact are attached
to it. This has been numerically demonstrated in previous
works [5,6] using the embedding method, which allows to
extract [5–11] the effective coefficient |t(EF, U)|2 from the
persistent current of a large non-interacting ring embed-
ding the many-body scatterer. Using the same method,
we show that it is not the region where the electrons in-
teract which acts as an effective one-body scatterer with
renormalized parameters, but a larger region where the
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Fig. 1. Scheme of the ring pierced by a flux φ used for the
embedding method. The correlation cloud induced by LS in-
teracting sites upon the auxiliary lead is sketched in grey.

many-body scatterer induces correlations. This problem
is somewhat similar to the Kondo problem, which can
be solved using Wilson’s numerical renormalization group
(NRG) [12]. Instead of using the NRG method, we use the
density matrix renormalization group (DMRG) method
[13,14] for a non-interacting ring embedding the many-
body scatterer, as sketched in Figure 1. The modulus of
the effective one-body transmission amplitude |t(EF, U)|
is obtained from the persistent current of the ring extrap-
olated to infinite lead length, while its phase α is given by
the Friedel sum rule.

After a study of the contained extrapolation, we ap-
ply the embedding method to determine the effective
total transmission coefficient |tT(EF, U)|2 of two identi-
cal many-body scatterers in series, connected by a non-
interacting lead of size LC (sketched in Fig. 2). The re-
sulting exact value for |tT(EF, U)|2 deviates from the one
obtained assuming the combination law of one-body scat-
terers in series. This U -dependent deviation is due to in-
duced correlations in the attached leads, and its depen-
dence on LC allows to determine the size of the region
which acts as an effective one-body scatterer.

2 Embedding method, extrapolation
and correlation cloud

To study the mapping of a bare many-body scatterer cou-
pled to leads onto an effective one-body scatterer with
interaction-dependent coefficients, we take a model of N
spinless fermions in a chain of L = LS + LL sites. The
Hamiltonian (with even LL) reads

H = − th

L∑

i=2

(c†i ci−1 + c†i−1ci )

+ U

LL/2+LS∑

i=LL/2+2

[ni − V+] [ni−1 − V+] .

(1)

The hopping amplitude th = 1 between nearest neigh-
bor sites sets the energy scale, ci (c†i ) is the annihilation
(creation) operator at site i, and ni = c†ici . The near-
est neighbor repulsion U acts upon LS consecutive sites
and gives rise to many-body scattering. We take a half-
filled model (N = L/2), with a potential V+ = 1/2 being

LS LS

LC

Fig. 2. Scheme of the set-up with two identical many-body
scatterers connected by LC sites where the carriers do not in-
teract. When LC is small, the two correlation clouds sketched
in grey overlap and the effective one-body scatterer of the en-
semble is not given by the effective one-body scatterer of each
element and the combination law of one-body scatterers in se-
ries.

due to a positive background charge which exactly com-
pensates the repulsion U inside the scatterer. Therefore,
our model exhibits particle-hole symmetry and a uniform
density, without Friedel oscillations around the scattering
region where the fermions interact.

The scattering geometry corresponds to two leads of
LL/2 → ∞ sites connected by an interacting scatterer of
LS sites. The electrons do not interact in the leads, a neces-
sary condition for having appropriate asymptotic scatter-
ing channels in one dimension. For the embedding method,
we consider the ring geometry sketched in Figure 1, the
scatterer being closed on itself via a non-interacting lead
of LL sites. This is achieved by adding a hopping term

−thc†1cL exp(iφ) + h.c.

to the Hamiltonian (1), the flux φ driving a persistent
current J(U) in the ring. As the flux dependence of J(U)
extrapolated to the limit LL → ∞ demonstrates [6], the
many-body scatterer behaves as an effective one-body
scatterer, but with an interaction-dependent elastic trans-
mission coefficient |t(EF, U)|2. Instead of using J(U), it is
simpler [6] to get |t(EF, U)|2 from the charge stiffness

D(U,LS, L) = (−1)N L

2
(
E0(U,LS, L) − Eπ(U,LS, L)

)
,

(2)
where E0(U,LS, L) − Eπ(U,LS, L) is the change of the
ground-state energy from periodic to antiperiodic bound-
ary conditions. D(U,LS, L) is obtained by the DMRG im-
plementation for real Hamiltonians, which can be used to
study with a great accuracy systems as large as L = 120
sites with N = 60 particles. In the limit LL → ∞, one
gets the modulus

|t(EF, U)| = sin
(
π

2
D∞(U,LS)

D∞(U = 0, LS)

)
(3)

of the transmission amplitude through the scatterer of LS

sites, D∞(U = 0, LS) being the charge stiffness of the
same ring for U = 0.

To take the limit LL → ∞ is one of the key points
of the embedding method. This extrapolation is also re-
quired for pure one-body scattering, where the finite size
corrections to formula (3) can be expanded [6] in powers
of 1/L. For many-body scattering, the DMRG study gives
an empirical scaling law [5,6]

D(U,LS, L) = D∞(U,LS) exp
(
C(U,LS)

L

)
(4)
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obtained for large LL and small LS, which allows to deter-
mine the asymptotic value D∞(U,LS) necessary to obtain
|t(EF, U)|2. Expanding this scaling law gives

D(U,LS, L) −D∞(U,LS) ≈ B(U,LS)
L

(5)

when L is large enough, where

B(U,LS) = C(U,LS)D∞(U,LS) . (6)

This is a power law decay, and not an exponential de-
cay with a characteristic scale above which the finite
size correction can be neglected. Numerical data show
that B(U,LS) is important for intermediate interaction
strengths U . But in the limits U → 0 (no scatter-
ing, total transmission) and U → ∞ (total reflection,
D∞(U → ∞, LS) → 0), the finite size corrections vanish
and B(U,LS) → 0.

However, since adding one-body potentials in the re-
gion of the LS sites yields a finite size correction to
D(U,LS, L) even when U → 0, the interpretation of these
corrections is not straightforward. They do not depend
only on the correlations induced in the attached lead by
the interaction acting inside the scatterer, but also on
more trivial one-body aspects.

3 Combination of two many-body scatterers
in series

A more direct approach, where the finite size effects are
only due to many-body correlations, consists in taking two
identical scatterers connected by a scattering-free lead of
size LC in which the electrons do not interact, as sketched
in Figure 2. Since the scattering channels begin at the
first attached sites of the leads when U = 0, there is a
simple combination law for one-body scatterers in series.
To study how this combination law is broken with increas-
ing U when LC is small allows to show that the size of the
effective elastic scatterer is larger than the region where
the carriers interact. When U �= 0, the scattering chan-
nels begin only asymptotically far from the many-body
scatterer.

Without interaction, a scatterer can be described at
energy EF by a unitary scattering matrix SS, written in
terms of its reflection and transmission amplitudes r, r′
and t, t′ as

SS =
(
r t′
t r′

)
. (7)

The scatterer being symmetric upon time reversal, one
has t = t′, while r = r′ if the scatterer is symmetric upon
space inversion. The transfer matrix MS (giving the flux
amplitudes at the right side in terms of the flux amplitudes
at the left side) reads

MS =
(

1/t r/t
r∗/t∗ 1/t∗

)
. (8)

The total Hamiltonian and the parity operator can be si-
multaneously diagonalized if one has inversion symmetry,

to give even and odd standing-wave solutions which can
be written as ψ0

i = cos(ki+ δ0) and ψ1
i = sin(ki + δ1) at

the right side of the scatterer, and ψ0
i = cos(ki− δ0) and

ψ1
i = sin(ki − δ1) at its left side. The two phase shifts δ0

and δ1 are related [15] to t and r by

t = (exp(2iδ0) + exp(2iδ1))/2 ,
r = (exp(2iδ0) − exp(2iδ1))/2 .

(9)

Due to symmetries, SS or MS have only two free pa-
rameters: the modulus |t| = cos(δ0 − δ1) and the phase
α = δ0 + δ1 of the transmission amplitude t, the unitar-
ity of SS (|t|2 + |r|2 = 1 and r/r∗ = −t/t∗) giving r. We
can determine |t| by the embedding method. The Friedel
sum rule [16] gives α. If one introduces a scatterer with
inversion symmetry in the central region of a scattering
free lead, this rule states [17] that

α = δ0 + δ1 = πNf (10)

for spinless fermions in one dimension. Nf is the number
of displaced fermions when the scatterer is introduced in
the central region. For a uniform filling factor ν = 1/2,
Nf = LS/2, and the phase α reads

α = πNf =
πLS

2
= kFLS , (11)

where kF = π/2 is the Fermi wave number. For the spin-
less case in one dimension with a uniform density, this
simply means that the transmitted wave has Nf changes
of sign when one transfers a fermion through a scatterer
containing Nf others. This is obvious for U = 0 as well
as for U �= 0. Using the same rule, the ideal ballistic
lead of LC sites has a modulus |t(LC)| = 1 and a phase
α(LC) = kFLC. Its transfer matrix reads

MC =
(
e−ikFLC 0

0 eikFLC

)
. (12)

The combination law of one-body scatterers in series being
a simple matrix multiplication for the transfer matrices,
the total transfer matrix MT(EF) of the ensemble is given
by

MT = MS ·MC ·MS . (13)

For the total transmission coefficient |tT|2 through the en-
semble, expressed in terms of the transmission t of each
element and of LC, this gives

|tT|2 =
|t|4

2(1 − |t|2)(1 + cos (2kFLC − 2α)) + |t|4 . (14)

Since |t| = 1 when LS is odd [5,18], we consider only
even values of LS. Taking α = πLS/2 gives the Landauer
conductance g = |tT|2 = 1 if LC is odd and

g =
|t|4

(|t|2 − 2)2
(15)

for LC even.
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Fig. 3. Conductance g(LC) of the set-up sketched in Figure 2
with LS = 2, for U = 1. The points are obtained with the em-
bedding method for the ensemble. The dashed line at g = 0.717
gives the approximate value obtained from equation (15), with
|t| obtained by the embedding method for a single scatterer.
The solid line is a fit with the form g(LC) = 0.7174−0.057/LC .
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Fig. 4. Conductance g(LC) as in Figure 3, but for U = 2.
The dashed line at g = 0.357 represents the value yielded by
equation (15), and the solid line is the fit g(LC) = 0.3572 −
0.077/LC .

4 Correlation-induced deviations
from the non-interacting combination law

Figures 3 and 4 show the conductance g for two scatterers
of LS = 2 sites in series, as a function of the length LC of
the coupling lead. The data points are directly obtained
from the embedding method, without assuming a combi-
nation law for scatterers in series. Resonances with g = 1
occur for odd LC = {1, 3, 5, . . .}. For even LC, the dashed
lines represent the LC-independent values |t|4/(|t|2 − 2)2
implied by equation (14), the coefficient |t| being obtained
using the embedding method for a single scatterer. Within
the accuracy of the extrapolation procedures required for
having the transmission |t| of an individual scatterer and
the total conductance g, the result of (14) gives the cor-
rect value when LC → ∞, but overestimates g for small
even values of LC. The difference

δg(LC) = g(LC → ∞) − g(LC) (16)

1 2 4 8 16
L

C

0.001

0.01

0.1

δg

U=2
U=1
U=4

Fig. 5. Error δg made when using the combination law of
equation (14) for having the conductance of the set-up sketched
in Figure 2 with LS = 2 and different values of U , as a function
of an even number LC of connecting sites. The lines give an
A(U,LS)/LC fit.
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Fig. 6. Amplitude A(U,LS) of the fits shown in Fig. 5 as a
function of U for different values of LS.

is shown in Figure 5 for even LC at different values of U .
For even LC, δg(LC) decays as a function of LC as

δg(LC) ≈ A(U,LS)
LC

, (17)

with an amplitude A(U,LS) which is shown in Figure 6
as a function of the interaction strength U . This 1/LC

decay is reminiscent of the 1/L decay characterizing
D(U,LS, L)−D∞(U,LS) and of the screening at large dis-
tances (larger than the Thomas-Fermi screening length)
of the potential of a point charge by non-interacting elec-
trons (Friedel oscillations, RKKY interactions . . . ) in one
dimension. This suggests that the decay could be faster
for leads of higher dimensions (1/Ld

C decay in d dimen-
sions). The amplitude A(U,LS) → 0 when U → 0 (one-
body scatterers) and when U → ∞. In this latter limit,
the scatterers become decoupled from the leads, the en-
ergy for an electron to enter or to leave a scatterer being
∝ U . A(U) is maximum near U = 2, a value where in
the thermodynamic limit LS → ∞ the Luttinger liquid
becomes [19] a Mott insulator for spinless fermions.
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For all odd values of LC, the data for the total trans-
mission coincide with the value g = 1 obtained from equa-
tion (14), and δg(LC) = 0. The even-odd dependence on
the parity of LC shows that the convergences of the phase
α and the modulus |t| of the effective scatterer are char-
acterized by different scales. One has α = πNf across the
scatterer, directly on a scale LS, independently of U , while
|t| reaches its asymptotic value on a much larger scale.
This is not surprising since α depends on the mean density,
while |t| depends on the correlations of its fluctuations. In
our model with a compensating background charge, the
mean density does not exhibit Friedel oscillations. Let us
underline that the correlation clouds which have to be in-
cluded with the many-body scatterer to form the effective
one-body scatterer must not be confused with the screen-
ing clouds characterizing the charge density.

5 Discussion of the relation to the Kondo
problem

To obtain the effective one-body matrix S(EF) of a cor-
related system of spinless fermions is a problem which
displays a certain similarity with the Kondo problem of
a spin degree of freedom surrounded by a metallic host.
In the two cases, it is crucial to couple the many-body
system to non-interacting conduction electrons. For the
Kondo problem, the original 3d model can be mapped
onto a 1d lattice without interaction embedding a Hub-
bard impurity. In Wilson’s renormalization group trans-
formations [12], the embedded many-body Hamiltonian is
progressively mapped onto an effective one-body Hamilto-
nian describing the low energy states. In this transforma-
tion, the coupling between different length scales is taken
into account progressively, working out from the impu-
rity to the longer length scales and lower energies. The
states at sites near the impurity involve conduction states
spanning the full band width 2th, while the states located
far from the impurity involve conduction states near the
Fermi level, with a progressively reduced band width. This
NRG method has been used recently [20] to calculate the
effective one-body Hamiltonian of a few Hubbard sites em-
bedded in a non-interacting chain, and the corresponding
phase shifts.

In our spinless case, the embedded system would give
rise to inelastic and elastic scattering if it was in the vac-
uum. Due to the attached non-interacting leads inelastic
processes become progressively blocked by a Fermi vac-
uum which eventually takes place in the leads, at a large
distance from the scatterer. Our DMRG study leads us
to a similar conclusion as NRG studies of impurities with
spin. It shows that the effective one-body elastic scatterer
necessary for extending the Landauer formulation of
coherent transport to correlated fermion systems must
include parts of the attached leads where the interacting
region induces power law correlations. Physically, this
gives a dependence of the conductance of a mesoscopic
scatterer upon the nature of the used leads which depends

on the strength of the interactions inside the scatterer.
Eventually, let us mention that the vertex corrections due
to inelastic scattering vanish [21] when T → 0, in a pertur-
bative approach to the Kubo conductance of an interact-
ing region embedded between semi-infinite leads. While
this agrees with our findings for LL → ∞, it is likely that
these corrections do not vanish when LL is finite, and ex-
hibit similar power-law decays as LL increases.
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